《反比例》教学设计

时间:2025-11-21 11:41:09
《反比例》教学设计

《反比例》教学设计

作为一名教职工,就有可能用到教学设计,教学设计是实现教学目标的计划性和决策性活动。那么写教学设计需要注意哪些问题呢?下面是小编整理的《反比例》教学设计,欢迎阅读与收藏。

《反比例》教学设计1

教学目标:

1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

教学难点:利用反比例的意义,正确判断两个量是否成反比例.

教法:自主探究,合作交流。

学法:小组合作交流。

教具:课件。

教学过程:

一、定向导学(5分).

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

2、成正比例的量有什么特征?(口答)

3、出示学习目标

1、理解反比例的意义,能根据反比例的意义。

2、正确的判断两种量是否成反比例。

二、自主学习(15分).

1、自学课本p47例2。

思考:

a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?

b、水的高度是随着( )的变化而变化 ,水的高度越( )杯子的底面积就越( )。

c、相对应的`杯子底面积和水的高度的乘积分别是( ),一定吗?

d、这个积表示( )表示它们之间的数量关系式是( )。

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

三、合作交流(6分)

1、成反比例的量应具备什么条件?

2、数学书第48页的做一做,学生独立完成,集体订正。

四、质疑探究(4分)

举出生活中反比例关系的例子

五、小结检测(4分)。

1、说说反比例的意义,如何判断两种量是否成反比例。

2、检测

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

3、第51页8题

4、第51页9题

六、堂清 (6分)

p51练习九第10、11、12题。

板书设计:

成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母表示: x×y=k(一定)

《反比例》教学设计2

目标:

1、使学生理解反比例函数的概念;

2、使学生能根据问题中的条件确定反比例函数的解析式;

3、能结合图象理解反比例函数的性质。

4、培养学生用 数形结合的思想与方法解决数学问题。

重点:反比例函数的图象的画法及性质

难点:

1、选取适当的点画反比例函数的'图象;

2、结合反比例函数图象说出它们的性质。

教学过程:

一、复习引入

1、什么叫一次函数?什么叫正比例函数?写出它们的一般式。它们有何关系?

2、正比例函数的图象与性质:

正比例函数 反比例函数

解析式 y=kx(k0) y=k/x或(k0)

图象经过(0,0)与(1,k)两点的直线 双曲线

当k0时,图象经过一、三象限;当k0时,图象经过二、四象限;当k0时,图象经过一、三象限;当k 0时,图象经过二、四象限;

性质:当k0时,Y随着X的增大而增大;当k0时,Y随着X的增大而减小;当k0时,Y随着X的增大而减小;当 k0时,Y随着X的增大而增大;

3、学学过反比例关系下面我们举几个例子

例1 矩形的面积是12cm2,写出矩形的一边y(cm)和另一边x(cm)之间的用函数关系式。

例2 两个变量x和y的乘积等于—6,写出y与x之间的函数关系式。

4、提出问题:

上面两个问题从关系式看,它们是不是正比例函数?为什么?

答:不是,因为不符合正比例函数y=kx的形式,它们的关系是反比例关系。

二、讲解新课

1、反比例函数的定义

一般地,(k为常数,k0)叫做反比例函数,即y是x的反比例函数,也可以写成

例3、知函数y=(m2+m—2)xm —2m—9是反比例函数,求m的值。

例4、已知变量y与 x成反比例,当x=3时, y=―6;那么当y=3时,x的值是();

例5、已知点A(―2,a)在函数的图像上,则a= ;

2、反比例函数的图象

例6、画出反比例函数的图象(师生分别画图)

步骤:(1)列表(强调x不能取0,为保证其图的对称性,x要取适当的值)

(2)描点(准确性要高)

(3)连线(用一条平滑曲线根据自变量由小到大的顺序把这些点连结起来)

归纳:

(1)反比例函数的图象由两条曲线组成(),叫做双曲线。

(2)讨论反比例函数图象的画法:

① 反比例函数的图象不是直线,两点法是不能画的,它的图象是双曲线,图象关于原点成中心对称。列表时自变量的值可以选取绝对值相等而符号相反的数(如1,2等等)相应地就得到绝对值相等而符号相反的.对应的函数值。 这样即可以简化计算的手续,又便于在坐标平面内找到点。

……此处隐藏17383个字……长方形的面积一定,长方形的长与宽。

(4)长方形的周长一定,长方形的长与宽。

(5)X和Y是两种相关联的量。(机动)

X×Y=5 5×X=Y

四、全课总结,拓展延伸

今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。

《反比例》教学设计15

一、内容和内容解析

1.内容

反比例函数的意义

2.内容解析

本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.

学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.

基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.

二、目标和目标解析

1.教学目标

(1)理解反比例函数的意义;

(2)能够根据已知条件确定反比例函数的解析式。

2.目标解析

达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.

达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.

三、教学问题诊断分析

学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.

但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.

本课的教学难点是:抽象得到反比例函数概念的过程.

四、教学过程设计

1.创设情境,引入新知

问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有什么样的关系?

问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?

师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.

设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.

2.观察感知,理解概念

针对学生的答案,提出一系列问题:问题3这些关系式有什么共同点?问题4这两个量之间是否存在函数关系?

问题4.1这个变化过程中的常量和变量分别是什么?问题4.2变量x、y在什么范围内变化?问题4.3 y是x的函数吗?

师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.

设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型.

3.归纳概括,建立模型问题5这个函数应该如何表示?问题6你能给这个函数起个名字吗?归纳整理出反比例函数的意义:一般地,形如(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.

师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.

设计意图:使学生从上述不同的'数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.

4.分析例题,培养能力

例1已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式.(2)当x=4时,求y的值.师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.

设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.例2已知(1)写出(2)求当与成反比例,并且当

时,和的函数解析式;

时的值.

师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.

设计意图:已知条件中y与

成反比例.设为

(k≠0),看作整体,进一步

加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

5.归纳小结,反思提高

教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:

(1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?(2)反比例函数中的两个变量的关系是什么?(3)反比例函数对自变量取值有何要求?(4)如何根据已知条件求反比例函数的解析式?

设计意图:让学生能够梳理知识体系,进一步加深对知识的理解.

6.布置作业

教科书习题26.1复习巩固第1,2题.五、目标检测设计

设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.

2.已知y与x?成反比例,并且当=2时,y=-6.(1)写出y关于的函数解析式;(2)当=4时,求y的值;(3)当y=4时,求x的值.设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

《《反比例》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式